研究業績

2012年~(論文・総説・著書)

論文

  • Nakatake M, Kurosaki H, Nakamura T:
    Histone deacetylase inhibitor boosts anticancer potential of fusogenic oncolytic vaccinia virus by enhancing cell-cell fusion.
    Cancer Sci. 115:600-610, 2024
    doi: 10.1111/cas.16032
  • Kurosaki H, Nakatake M, Sakamoto T, Kuwano N, Yamane M, Ishii K, Fujiwara Y, Nakamura T:
    Anti-Tumor Effects of MAPK-Dependent Tumor-Selective Oncolytic Vaccinia Virus Armed with CD/UPRT against Pancreatic Ductal Adenocarcinoma in Mice.
    Cells 10:985, 2021.
    doi: 10.3390/cells10050985
  • Tasaki M, Yamashita M, Arai Y, Nakamura T, Nakao S:
    IL-7 coupled with IL-12 increases intratumoral T cell clonality, leading to complete regression of non-immunogenic tumors.
    Cancer Immunol Immunother 70:3557-3571, 2021.
    doi: 10.1007/s00262-021-02947-y
  • Yamashita M, Tasaki M, Murakami R, Arai Y, Nakamura T, Nakao S:
    Oncolytic vaccinia virus induces a novel phenotype of CD8+ effector T cells characterized by high ICOS expression.
    Mol Ther Oncolytics 20:422-432, 2021.
    doi: 10.1016/j.omto.2021.01.016
  • Nakatake M, Kuwano N, Kaitsurumaru E, Kurosaki H, Nakamura T:
    Fusogenic oncolytic vaccinia virus enhances systemic antitumor immune response by modulating the tumor microenvironment.
    Mol Ther 29:1782-1793, 2021.
    doi: 10.1016/j.ymthe.2020.12.024
  • Nakao S, Arai Y, Tasaki M, Yamashita M, Murakami R, Kawase T, Amino N, Nakatake M, Kurosaki H, Mori M, Takeuchi M, Nakamura T:
    Intratumoral Expression of IL-7 and IL-12 Using an Oncolytic Virus Increases Systemic Sensitivity to Immune Checkpoint Blockade.
    Sci Transl Med 12:eaax7992, 2020.
    doi: 10.1126/scitranslmed.aax7992
  • Horita K, Kurosaki H, Nakatake M, Kono H, Ito M, Nakamura T:
    Long noncoding RNA UCA1 enhances sensitivity to oncolytic vaccinia virus by sponging miR-18a/miR-182 and modulating the Cdc42/filopodia axis in colorectal cancer.
    Biochem Biophys Res Commun 516:831-838, 2019.
    doi: 10.1016/j.bbrc.2019.06.125
  • Nakatake M, Kurosaki H, Kuwano N, Horita K, Ito M, Kono H, Okamura T, Hasegawa K, Yasutomi Y, Nakamura T:
    Partial deletion of glycoprotein B5R enhances vaccinia virus neutralization escape while preserving oncolytic function.
    Mol Ther Oncolytics 14:159-171, 2019.
    doi: 10.1016/j.omto.2019.05.003
  • Horita K, Kurosaki H, Nakatake M, Kuwano N, Oishi T, Itamochi H, Sato S, Kono H, Ito M, Hasegawa K, Harada T, Nakamura T:
    LncRNA UCA1-mediated Cdc42 signaling promotes oncolytic vaccinia virus cell-to-cell spread in ovarian cancer.
    Mol Ther Oncolytics 13:35–48, 2019.
    doi: 10.1016/j.bbrc.2019.06.125
  • Futami M, Sato K, Miyazaki K, Suzuki K, Nakamura T, Tojo A:
    Efficacy and Safety of Doubly-Regulated Vaccinia Virus in a Mouse Xenograft Model of Multiple Myeloma.
    Mol Ther Oncolytics 6:57-68, 2017.
    doi: 10.1016/j.omto.2017.07.001
  • Hiratsuka M, Ueda K, Uno N, Uno K, Fukuhara S, Kurosaki H, Takehara S, Osaki M, Kazuki Y, Kurosawa Y, Nakamura T, Katoh M, Oshimura M:
    Retargeting of microcell fusion towards recipient cell-oriented transfer of human artificial chromosome.
    BMC Biotechnol 15:58, 2015.
    doi: 10.1186/s12896-015-0142-z
  • Lech PJ, Pappoe R, Nakamura T, Russell SJ:
    Antibody neutralization of retargeted measles viruses.
    Virology 454-455:237-246, 2014.
    doi: 10.1016/j.virol.2014.01.027
  • Ohashi T, Nakamura T, Kidokoro M, Zhang X, and Shida H:
    Combined Cytolytic Effects of a Vaccinia Virus Encoding a Single Chain Trimer of MHC-I with a Tax-Epitope and Tax-Specific CTLs on HTLV-I-Infected Cells in a Rat Model.
    Biomed Res Int 2014:902478, 2014.
    doi: 10.1155/2014/902478
  • Miyamoto S, Inoue H, Nakamura T, Yamada M, Sakamoto C, Urata Y, Okazaki T, Marumoto T, Takahashi A, Takayama K, Nakanishi Y, Shimizu H and Tani K:
    Coxsackievirus B3 Is an Oncolytic Virus with Immunostimulatory Properties that Is Active Against Lung Adenocarcinoma.
    Cancer Res 15:2609-2621, 2012.
    doi: 10.1158/0008-5472.CAN-11-3185

総説

  • 中村貴史:
    ワクシニアウイルスを用いたウイルス療法
    がんのウイルス療法
    Precision Medicine 7:20-23, 2024
  • 中村貴史:
    腫瘍溶解性ウイルス mRNAワクチンやゲノム編集で注目が集まる遺伝子治療
    医学のあゆみ 285:370-377, 2023
  • 中村貴史:
    免疫制御システムを搭載した腫瘍溶解ウイルス療法 特集/新しいがん免疫療法研究の展開と臨床応用
    腫瘍内科 31:348-353, 2023
  • 中村貴史:
    がん治療のための腫瘍溶解性ウイルス─腫瘍溶解性ウイルスの種類,特徴,作製法から最近の話題まで
    医学のあゆみ 265:359-365, 2018.
  • 中村貴史:
    ワクシニアウイルス
    遺伝子医学 MOOK30号:99-105, 2016
  • 中村貴史:
    腫瘍特異的に増殖する遺伝子組換えワクシニアウイルスによるがんウイルス療法
    実験医学 34:31-37, 2016.
  • 中村貴史:
    miRNA制御ウイルスによるがん細胞特異的治療法の開発
    遺伝子医学 MOOK23号:176-181, 2012.
  • 著書

  • 中村貴史:
    第4節 がんin vivo遺伝子治療 ワクシニアウイルス
    遺伝子治療開発研究ハンドブック, 藤堂具紀編. 第2版, p421-426
    エヌ・ティー・エス, 東京, 2023
  • 中村貴史:
    がん治療のための腫瘍溶解性ウイルス─腫瘍溶解性ウイルスの種類,特徴,作製法から最近の話題まで
    別冊-医学のあゆみ遺伝子治療の新局面, 小野寺雅史編.pp37-43
    医歯薬出版株式会社, 東京, 2019
  • 中村貴史:
    "第3編 ウイルスを用いたがん治療 第2章 ウイルス設計技術 
    第3節 がん治療向け遺伝子組換えワクシニアウイルスの開発"
    次世代がん治療, pp211-217
    エヌ・ティー・エス, 東京, 2017
  • 中村貴史:
    "第5章 がん領域における医療技術の現状と課題 
    13節 ウイルスを用いたがん療法の開発と最新研究動向"
    "先端治療技術の実用化と開発戦略:核酸医薬、免疫療法、遺伝子治療、
    細胞医薬品, pp326-333"
    技術情報協会, 東京, 2017

~2011年(代表論文)

  • Hikichi M, Minoru Kidokoro M, Haraguchi T, Iba H, Shida H, Tahara H and Nakamura T:
    MicroRNA Regulation of Glycoprotein B5R in Oncolytic Vaccinia Virus Reduces Viral Pathogenicity Without Impairing Its Antitumor Efficacy.
    Mol Ther 19:1107-1115, 2011.
    doi: 10.1038/mt.2011.36
  • Meng X, Nakamura T, Okazaki T, Inoue H, Takahashi A, Miyamoto S, Sakaguchi G, Eto M, Naito S, Takeda M, Yanagi Y and Tani K:
    Enhanced Antitumor Effects of an Engineered Measles Virus Edmonston Strain Expressing the Wild-type N, P, L Genes on Human Renal Cell Carcinoma.
    Mol Ther 18:544-551, 2010.
    doi: 10.1038/mt.2009.296
  • Pham L, Nakamura T, Gabriela Rosales A, Carlson SK, Bailey KR, Peng KW and Russell SJ:
    Concordant activity of transgene expression cassettes inserted into E1, E3 and E4 cloning sites in the adenovirus genome.
    J Gene Med 11:197-206, 2009.
    doi: 10.1002/jgm.1289
  • Paraskevakou G, Allen C, Nakamura T, Zollman P, James CD, Peng KW, Schroeder M, Russell SJ and Galanis E:
    Epidermal growth factor receptor (EGFR)-retargeted measles virus strains effectively target EGFR- or EGFRvIII expressing gliomas.
    Mol Ther 15:677-686, 2007.
    doi: 10.1038/sj.mt.6300105
  • Hasegawa K, Nakamura T, Harvey M, Ikeda Y, Oberg A, Figini M, Canevari S, Hartmann LC and Peng KW:
    The use of a tropism-modified measles virus in folate receptor-targeted virotherapy of ovarian cancer.
    Clin Cancer Res 12:6170-6178, 2006.
    doi: 10.1158/1078-0432.CCR-06-0992
  • Nakamura T, Peng KW,Harvey M, Greiner S, Lorimer IA, James CD and Russell SJ:
    Rescue and propagation of fully retargeted oncolytic measles viruses.
    Nat Biotechnol 23:209-214, 2005
  • Anderson BD, Nakamura T, Russell SJ and Peng KW:
    High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res 64:4919-4926, 2004.
    doi: 10.1158/0008-5472.CAN-04-0884
  • Nakamura T, Peng KW, Vongpunsawad S, Harvey M, Mizuguchi H, Hayakawa T, Cattaneo R and Russell SJ:
    Antibody-targeted cell fusion.
    Nat Biotechnol 22:331-336, 2004.
    doi: 10.1038/nbt942
  • Nakamura T, Sato K and Hamada H:
    Reduction of natural adenovirus tropism to the liver by both ablation of fiber-coxsackievirus and adenovirus receptor interaction and use of replaceable short fiber.
    J Virol 77:2512-2521, 2003.
    doi: 10.1128/jvi.77.4.2512-2521.2003
  • Nakamura T, Sato K and Hamada H:
    Effective gene transfer to human melanomas via integrin-targeted adenoviral vectors.
    Hum. Gene Ther 13:613-626, 2002.
    doi: 10.1089/10430340252837215
  • Nakamura T, Akiyoshi H, Shiota G, Isono M, Nakamura K, Moriyama M and Sato K:
    Hepatoprotective action of adenovirus-transferred HNF-3γ gene for acute liver injury caused by CCl4.
    FEBS Lett 459:1-4, 1999.
    doi: 10.1016/s0014-5793(99)01202-8
  • Nakamura T, Akiyoshi H, Saito I and Sato K:
    Adenovirus-mediated gene expression in the septal cells of cirrhotic rat livers.
    J Hepatol 30:101-106, 1999.
    doi: 10.1016/s0168-8278(99)80013-0