人類遺伝学

科目到達目標:遺伝機構を理解し、ヒトの遺伝学の意義、特異性、疾患との関連を自ら思考できる。

科目責任者(所属):尾﨑 充彦(病態生化学)

連絡先:教務係に問い合わせること

回数	月日	時限	講義室	授業内容	担当者	講座・ 分野・診療科	到達目標	授業のキーワード
1	4/3(水)	2	112	ヒト遺伝の基礎:染色体の命名法、体 細胞・減数分裂	久郷 裕之	遺伝子機能工学	染色体の命名法、核型記載法、体細胞および減数 分裂の遺伝学的意義が理解できる。	ICSN、核型分析、染色体分染法、姉妹染色分体、 相同染色体、細胞分裂
2	4/10(水)	2	112	ヒト遺伝の基礎:染色体の構造	稲賀 すみれ	解剖学	頭似蜆レベルまでの似袖形態を理解する。	DNA、ヒストン、ヌクレオソーム、ソレノイド、クロマチン、基本線維、高次構造、コイル(らせん)構造、バンド構造、動原体、紡錘糸
3	4/17(水)	2	112	ヒト遺伝の基礎: DNAの化学修飾	平塚 正治	細胞工学	DNAは遺伝物質であり、情報の貯蔵庫であるが、 化学修飾によって可逆的制御を受けていることを 理解する。	エピジェネティクス、DNAメチル化、遺伝子発現の 抑制、細胞分化と初期化
4	4/24(水)	2	112	ヒト遺伝の基礎:単一遺伝子疾患の遺 伝形式	笠城 典子	基礎看護学	単一遺伝子疾患の遺伝形式、家系図作成と意義 を理解する。	メンデル遺伝形式、家族歴、家系図、遺伝カウンセ リング
5	5/8(水)	2	112	分子病の遺伝学:総論	難波 栄二	研究推進機構 研究戦略室 (非常勤講師)		ヒト遺伝、多型、遺伝子変異、難治疾患、次世代 シークエンサー、遺伝カウンセリング
6	5/15(水)	2	112	分子病のi遺伝学: 先天性疾患・奇形症 候群・染色体異常	岡崎 哲也	脳神経小児科学	して埋解する。	先天異常、先天奇形、環境変異原、染色体異常、 染色体異常症
7	5/22(水)	2	112	分子病の遺伝学:出生前診断	岡崎 哲也	脳神経小児科学	について学ぶ。	出生前診断、受精卵、絨毛診断、羊水検査、胎児 画像、母体血清マーカー
8	5/29(水)	2	112	分子病の遺伝学:免疫疾患、免疫不全 症候群等	北村 幸郷		免疫系の欠落状態から、先天性免疫不全症を分 類し、代表的疾患を説明できる。	連鎖無ガンマグロブリン血症、高IgM症候群、重症 免疫不全症、ADA欠損症
9	6/5(水)	2	112	分子病の遺伝学:神経疾患、先天性ラ イソゾーム病	檜垣 克美	研究推進機構 研究基盤センター (非常勤講師)	先天性ライソゾーム病の小児脳疾患の分子病態と 治療法を理解する。	子化合物療法
10	6/12(水)	2	112	分子病の遺伝学:消化器系疾患	尾﨑 充彦	病態生化学		家族性大腸腺腫症(FAP)、遺伝性非腺腫症大腸 癌(HNPCC)
11	6/19(水)	2	112	分子病の遺伝学:筋疾患、筋ジストロ フィー等	二宮 治明	生体制御学	筋ジストロフィー症の病態を理解する。	ジストロフィン、ジストログリカン、細胞骨格
12	6/26(水)	2	112	分子病の遺伝学:代謝疾患(肥満・糖 尿病など)	花木 啓一	母性·小児 家族看護学	肥満の発症、インスリンの分泌と作用に関連する 遺伝子異常を理解する。	体脂肪量調節機序、インスリン分泌、インスリン抵抗性、 糖尿病、肥満関連遺伝子、倹約遺伝子
13	7/3(水)	2	112	分子病の遺伝学:神経疾患、アルツハ イマー病	河月 稔	生体制御学	家族性アルツハイマー病の原因遺伝子、遺伝子 多型を理解する。	認知症、家族性アルツハイマー病、アミロイドベータ前駆体 蛋白、プレセニリン1、2、アポリポ蛋白E4
14	7/10(水)	2	112	分子病の遺伝学:代謝疾患、脂質代謝 異常等	仲宗根 眞恵	生体制御学	先天性代謝異常症の病態と治療を理解する。	先天性代謝異常、新生児スクリーニング、アミノ酸 除去ミルク
15	7/17(水)	2	112	分子病の遺伝学:トリプレットリピート病	中山 祐二	研究推進機構 研究基盤センター (非常勤講師)	三塩基繰り返し配列が延長する疾患であるトリプ レットリピート病の遺伝メカニズムを理解する。	トリプレットリピート病、三塩基繰り返し配列、脆弱 X症候群および関連疾患、表現促進現象

教育グランドデザインとの関連:2、3、7

※到達目標・授業のキーワードを確認の上、予習・復習してください。

学位授与の方針との関連:1、2、4 授業のレベル:2

評価:レポート 60% 質疑応答等 30% 授業の態度 10%

実務経験との関連:一部の講義については、現役の医師がその経験を活かし、各自の専門分野に関する講義を行う。