基礎薬理学

科目到達目標:薬の生体に対する作用を理解し薬について正しい知識を得る。

科目責任者(所属): 今村 武史(分子薬理学)

回数	月日	時限	講義室	授業内容	担当者	講座・ 分野・診療科	到達目標	授業のキーワード
1	4/4(火)	4	111	薬理学概論	今村 武史	分子薬理学	薬とは何か、薬剤情報の理解	薬物、薬物受容体、薬物動態、薬力学
2	4/11(火)	3	111	Pharmacodynamics(1)用量反応関係	今村 武史	分子薬理学	用量反応曲線の理解	ED50、Potency、Efficacy、LD50、TD50、治療係数
3	4/11(火)	4	111	Phamacodynamics(2)薬物受容体	今村 武史	分子薬理学	受容体の構造・特性を理解、それを基にして受容体作動薬、受容体拮抗薬の理解	リガンド、完全活性薬、部分活性薬、競合拮抗薬、解離定数 (KD)、pA2値
4	4/18(火)	3	111	Phamacokinetics ADME(1)	島田 美樹	薬剤部	薬物の吸収・分布・代謝・排泄の機序の理 解	クリアランス、半減期、AUC、初回通過効果、分布容積、生体 利用率
5	4/18(火)	4	111	Phamacokinetics ADME(2)	島田 美樹	薬剤部	薬物の吸収・分布・代謝・排泄の機序の理 解	薬理遺伝学、薬物動態に影響を与える因子、薬物動態の個人差・人種差、Therapeutic drug monitoring、薬物動態を指向した医薬品開発
6	4/25(火)	3		薬物代謝とCYP、薬害・副作用 薬物代謝に関する相互作用	島田 美樹		薬物代謝を規定する因子、薬物相互作用 の理解	CYP、酵素誘導、酵素阻害、薬物相互作用全般
7	4/25(火)	4	111	神経作用薬序論	今村 武史	分子薬理学	神経作用薬の作用点、作用機序を理解する	神経伝達物質、薬剤作用点、再取り込み、受容体
8	5/2(火)	3	111	自律神経作用薬(1)	岡村 富夫	分子薬理学 (非常勤講師)	交感神経系作用薬の作用の理解	アドレナリン作用薬、 $lpha$ 受容体、 eta 受容体
9	5/2(火)	4	111	自律神経作用薬(2)	岡村 富夫	分子薬理学 (非常勤講師)	交感神経系作用薬の作用の理解	アドレナリン作用薬、α 受容体、β 受容体
10	5/9(火)	3	111	自律神経作用薬(3)	岩尾 洋	分子薬理学 (非常勤講師)	副交感神経系作用薬の作用の理解	コリン作用薬、ムスカリン受容体、ニコチン受容体
11	5/9(火)	4	111	自律神経作用薬(4)	岩尾 洋	分子薬理学 (非常勤講師)	副交感神経系作用薬の作用の理解	コリン作用薬、ムスカリン受容体、ニコチン受容体
12	5/16(火)	3	111	生理活性物質と関連薬(1)	今村 武史	分子薬理学	血管作動性物質と関連薬の理解	オータコイド、アンギオテンシン、エンドセリン、一酸化窒素
13	5/16(火)	4	111	生理活性物質と関連薬(2)	今村 武史	分子薬理学	エイコサノイドと関連薬の理解	エイコサノイド、シクロオキシゲナーゼ、プロスタグランジン
14	5/23(火)	3	111	生理活性物質と関連薬(3)	今村 武史	分子薬理学	糖代謝関連薬の理解	インスリン、SU受容体、インクレチン受容体
15	5/23(火)	4	111	生理活性物質と関連薬(4)	今村 武史	分子薬理学	糖およびプリン体代謝関連薬の理解	SGLT2受容体、アディポネクチン、プリン塩基

教育グランドデザインとの関連:2,3,5 学位授与の方針との関連:1,2,3 評価: 定期試験85%、小テストト15%