栄養と代謝

到達目標:生体構成分子を化学的に理解するとともに、糖質、たんぱく質、脂質の消化、吸収および細胞内代謝を理解する。

科目責任者(所属):片岡 英幸(成人•老人看護学)

回数	月日	時限	講義室	授業内容	担当者	講座· 分野·診療科	到達目標	授業のキーワード
1	10/4(火)	3	共 C21	生化学の意義 生体分子の概要	上田 悦子	生体制御学	栄養生化学の概要、生体構成分子の種類を 説明できる。	栄養素、日本人の食事摂取基準、生体分子
2	10/11(火)	3	共 C21	糖質	上田 悦子	生体制御学	糖質の定義、生体における役割、命名法、 化学的性質を説明できる。	単糖類、オリゴ糖類、多糖類、異性体、誘導体、グルコサミノグリカン
3	10/18(火)	3	共 C21	脂質	上田 悦子	生体制御学	脂質の定義、生体における役割、種類と基本構造を説明できる。	単純脂質、複合脂質、飽和脂肪酸、不飽和脂肪酸、過酸化脂質、トリアシ ルグリセロール、リン脂質、ステロイド、リポタンパク質
4	10/25(火)	3	共 C21	アミノ酸、タンパク質	上田 悦子	生体制御学	タンパク質の生理的機能、アミ/酸の基本構造と 性質、タンパク質の構造を説明できる。	アミノ酸、両性イオン、等電点、ペプチド結合、一次構造、二次構造、 $lpha$ ヘリックス、 eta 構造、三次構造、四次構造、変性
5	11/1(火)	3	共 C21	核酸	上田 悦子	生体制御学	核酸、基本構造と役割を説明できる。	ヌクレオシト゛、ヌクレオチト゛、リホ゛ース、テ゛オキシリホ゛ース、DNA、mRNA、tRNA、 rRNA、塩基対
6	11/8(火)	3	共 C21	酵素	上田 悦子	生体制御学	酵素の定義、命名法、反応様式による分類、 酵素反応の特徴を説明できる。	酵素活性、基質、反応速度、補酵素、FAD、FMN、NAD、NADP、ミカエリス 定数、競合阻害、非競合阻害、不競合阻害、アロステリック酵素、アイソサ・イム
7	11/15(火)	3	共 C21	ビダシ、無機質	上田 悦子	生体制御学	ビタミン、無機質の種類と機能を説明できる。	ビタミンA、ビタミンD、ビタミンE、ビタミンK、ビタミンB、ビタミンC、過剰症、欠乏症、 主要無機質、微量元素
8	11/22(火)	3	共 C21	生体膜	上田 悦子	生体制御学	生体膜の構造と機能を説明できる。	生体膜、脂質二重層、リン脂質、エント・サイトーシス、エキソサイトーシス、受動輸送、能動輸送、受容体、ATP-ase
9	11/29(火)	3	共 C21	エネルキー代謝	上田 悦子	生体制御学	生体内における酸化還元反応によるエネル ギー獲得について説明できる。	高エネルキー化合物、ミトコント・リア電子伝達系、酸化的リン酸化、酸化還元酵素、活性酸素、酸素ラジカルスカヘンジャー
10	12/6(火)	3	共 C21	解糖系、クエン酸回路	片岡 英幸	成人·老人 看護学	解糖系、クエン酸回路について説明できる。	解糖系、クエン酸回路
11	12/13(火)	3	共 C21	糖新生	片岡 英幸	成人·老人 看護学	糖新生について説明できる。	グリコーゲン合成、糖新生、ペントースリン酸回路、糖鎖
12	1/10(火)	3	共 C21	脂質の代謝	片岡 英幸	成人·老人 看護学	脂質の代謝について説明できる。	リポ蛋白、コレステロール、脂肪酸、β酸化、リン脂質
13	1/17(火)	3	共 C21	アミノ酸の代謝	片岡 英幸	成人·老人 看護学	アミノ酸の代謝について説明できる。	アミノ酸、脱アミノ、尿素回路
14	1/31(火)	5	共 C31	核酸の代謝、タンパク 質の合成	片岡 英幸	成人·老人 看護学	核酸の代謝、タンパク質の合成について説 明できる。	プリン環、ピリミジン環、de novo合成、サルベージ経路、タンパク質合成
15	1/31(火)	3	共 C21	代謝の相互関係と調節	片岡 英幸	成人·老人 看護学	代謝の相互関係と調節について説明でき る。	糖質代謝、アミノ酸代謝、脂質代謝

教育グランドデザインとの関連: 2.3 学位授与の方針との関連: 1

教科書: 1. 生化学(新スタンダード栄養・食物シリーズ)(東京化学同人)

参考書: 1. シンプル生化学(南江堂) 2. スッキリわかる! グングン身につく! 生化学ドリル(南山堂) 3. 基礎からしっかり学ぶ生化学(羊土社)

評価: 定期試験の結果により評価する。

各担当者が出題し、それぞれの配点は担当時間に比例するよう配分する。